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LETTER TO THE EDITOR

A generalized nonclassical state of the radiation field and
some of its properties

P Roy† and B Roy‡
Physics and Applied Mathematics Unit, Indian Statistical Institute, Calcutta—700035, India

Received 5 August 1997

Abstract. We construct a generalized nonclassical state of the quantized radiation field (which
in different limits yields the vacuum state, the number state, the binomial state, the negative
binomial state and the coherent state) and examine various nonclassical properties of this state.

Nonclassical states of the radiation field have been an active field of research for the last
few years because they not only reveal the quantum essence of the radiation field but also
have potential application in optics communication, detection of weak signals, atomic and
molecular physics etc. These nonclassical states are usually constructed from the number
state |n〉 [1] or the coherent state|α〉 [2]. Among the various nonclassical states, the
binomial state [3] and the negative binomial state [4] occupy a special position in the sense
that they are intermediate states. The binomial state is intermediate between the coherent
state|α〉 and the number state|n〉 and the negative binomial state is intermediate between
the thermal state and the coherent state. Both of these states have been shown to exhibit
nonclassical properties, such as antibunching, sub-Poissonian statistics and squeezing [3–5].

In this letter, we shall study a generalized nonclassical state which in different limits
yields the vacuum state, the number state, the binomial state, the negative binomial state and
the coherent state. In particular, we shall study the various nonclassical properties exhibited
by them.

First, we note that the binomial state is defined as [3]

|p,M〉 =
N∑
n=0

BMn |p〉 =
M∑
n=0

√
MCnpn(1− p)M−n|n〉 06 p 6 1. (1)

From (1) it follows that the square of the weight associated with the number state|n〉 is
the binomial distribution. In this context it may be noted that the binomial distribution
acts as the weight function with respect to which the Kravchuk polynomials are orthogonal
[6, 7]. Similarly, in the case of a coherent state the square of the weight associated with
the number state acts as the weight function with respect to which the Charlier polynomials
are orthogonal [6, 7]. This, in fact, has motivated us to look for more general orthogonal
polynomials which yield all other orthogonal polynomials in different limits. One such
polynomial is the Hahn polynomial [7, 8] which contains all other classical orthogonal
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polynomials as limiting cases. Hahn polynomials are orthogonal polynomials of a discrete
variable and measure of orthogonality corresponding to these polynomials is given by [9]

ω(n,N, α, β) = λ(α + 1)n(β + 1)N−n
n!(N − n)! n = 0, 1, . . . , N (2)

λ = N !

(α + β + 2)N
α, β > −1 (3)

where

(a)0 = 1 (a)n = a(a + 1) · · · (a + n− 1).

Then using the result
N∑
n=0

(a)n(b)N−n
n!(N − n)! =

(a + b)N
N !

(4)

it can be shown thatω(n,N, α, β) is indeed a normalized probability measure:
N∑
n=0

ω(n,N, α, β) = 1. (5)

Now following [3] we define the generalized nonclassical state|N, α, β〉 as

|N, α, β〉 =
N∑
n=0

√
ω(n,N, α, β)|n〉 (6)

where|n〉 denotes the harmonic oscillator eigenkets (number states).
We can now verify that
(i) asα→−1, |N, α, β〉 → |0〉, the vacuum state;
(ii) as β →−1 andα = 0, |N, α, β〉 → |N〉, the number state;
(iii) as α → ∞ with β = α(1−p)

p
, 0 < p < 1, |α, β,N〉 → |N,p〉 where|N,p〉 is the

binomial state;
(iv) asN →∞ with α = γ − 1 andβ = pN

(1−p) , 0 < p < 1, |N, α, β〉 → |γ, p〉 where
|γ, p〉 is the negative binomial state;

(v) asN →∞ with α = N − 1, β = |N2

λ2 , |N, α, β〉 → |λ〉 where|λ > is the coherent
state.

We shall now examine various properties of the state|N, α, β〉. To do this we shall
need several expectation values and by using (4) and (6) it can be shown that

〈aa†〉 = 1+ N(α + 1)

(α + β + 2)
(7)

〈a†a〉 = N(α + 1)

(α + β + 2)
(8)

〈a2〉 =
√
N(N + 1)(α + 1)(α + 2)

(α + β + 2)(α + β + 3)

N−2∑
n=0

√
ω(n,N, α, β)ω(n,N − 2, α + 2, β = 〈a†2〉 (9)

〈a〉 = 〈a†〉 = N(α + 1)

(α + β + 2)

N−1∑
n=0

√
ω(n,N − 1, α + 1, β) (10)

〈a†2a2〉 = N(N − 1)(α + 1)(α + 2)

(α + β + 2)(α + β + 3)
(11)

〈a†aa†a〉 = N(α + 1)

(α + β + 2)
+ N(N − 1)(α + 1)(α + 2)

(α + β + 2)(α + β + 3)
. (12)
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We shall now calculate the Mandel parameter [10]. The Mandel parameterQ is defined by

Q = 〈a
†aa†a〉 − 〈a†a〉2− 〈a†a〉

〈a†a〉 . (13)

Then using (9) and (12) we find

Q = N(β + 1)

(α + β + 2)(α + β + 3)
− (α + 2)

(α + β + 3)
. (14)

It may be recalled thatQ > 1 implies super-Poissonian,Q = 1 Poissonian andQ < 1
sub-Poissonian statistics. Therefore from (14) we conclude that the state|N, α, β〉 exhibits
sub-Poissonian statistics.

Let us now examine the antibunching effect for states|N, α, β〉. The relevant parameter
is given by

g2(0) = a†2a2

|〈a†a〉|2 . (15)

Using (9) and (11) it follows from (15) that

g2(0) = (N − 1)(α + 2)(α + β + 2)

N(α + 1)(α + β + 3)
(16)

so that

g2(0) < 1⇒ N <
(α + 2)(α + β + 2)

(β + 1)
. (17)

Thus for a given value ofN we can always find values ofα andβ such that condition (17)
is satisfied, i.e. the state|N, α, β〉 exhibits the antibunching effect. On the other hand, when
α andβ are prescribed it is possible to find a value ofN = N0 such that antibunching takes
place forN < N0.

Finally we shall examine squeezing properties of the state|N, α, β〉. To determine the
squeezing effect we first define a pair of canonical quadrature operators:

X1 = a + a†
2

X2 = a − a†
2i

(18)

which obey the uncertainty relation

〈(1X1)
2〉〈(1X2)

2〉 > 1
16 (19)

where〈(1X)2〉 = 〈X2〉 − 〈X〉2 and the field is said to be squeezed if

〈(1A)2〉 < 1
4 (20)

whereA = X1 or X2. Now using (7)–(10) we find

〈(1X1)
2〉 − 1

4 = f + g − h (21)

and

〈(1X2)
2〉 − 1

4 = f − g (22)

where

f = 2N(α + 1)

(α + β + 2)
(23)

g = 2

√
N(N − 1)(α + 1)(α + 2)

(α + β + 2)(α + β + 3)

N−2∑
n=0

√
ω(n,N, α, β)ω(n,N − 2, α + 2, β) (24)

h = 4
N(α + 1)

(α + β + 1)

[ N−1∑
n=0

√
ω(n,N, α, β)ω(n,N − 1, α + 1, β)

]2

. (25)
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Figure 1. Plot of 〈(1X1))
2〉 − 1

4 againstN for α = 4, β = 6 andα = 10, β = 5.

Figure 2. Plot of 〈1X2)
2〉 − 1

4 againstN for α = 4, β = 6 andα = 2, β = 3.

It is now necessary to verify the squeezing conditions (20) with given by (23) and (24).
In our numerical study we have plotted the two quadrature variances againstN for fixed
values ofα andβ as shown in figures 1 and 2 respectively. From the figures it is clear that
there can be squeezing in either of the components.

In summary we have constructed a generalized nonclassical state of the radiation field
which in different limits yields various other states. It has also been shown that this state
exhibits sub-Poissonian behaviour, antibunching and quadrature squeezing.
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